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We have developed a computer code for

assessing the performance of new variations on
the thermal barrier idea for tandem mirror

reactors (TMR’s). The code solves the particle

and energy balance equationa simultaneously for
each species of particles in each portion of the
machine. The code is thus able to detemine the

neutral beam and ECRH injection powers that are

required to auatain an equilibrium situation,

and, from these, to determine the machine’s Q
value. This paper focuses on the methodology

and numerical algorithms used in accomplishing
this solution. We plan to use this code to

compare the A-cell barrier TMR with axisymmetric

TMR’s.

Introduction

This paper describes a computer code

developed at the Lawrence Livermore National

Laboratory (LLNL) to assess the performance of

two new tandem mirror fusion reactor (TMR)
concepts. Both of these new concepts are

variations on the thermal barrier idea invented
by Baldwin, Logan, and Fouler in April of

1979.1 As originally proposed, the idea

called for a potential depression to be created
between the central cell and the plug of a

tandem mirror. Such a depression could be
obtained by decreasing the magnetic field in
this region, and maintained by pumping out the
ions that would tend to collisionally trap in

the potential depression. This depression
reduced the thermal contact between passing
central-cell electrons and potential-trapped
plug electrons. Because of thLa reduced thermal

contact, it became possible to dramatically
increase the plug electron temperature, and

hence the plug potential, by modest amounts of
electron-cyclotron resonant heating (ECRH) in

the plug. This original idea became known as
the inaide-barrier concept, and a computer code
for aasessing the performance of tandem mirror
reactors with inside thermal barriers was
developed in November of 1979.2

Work performed under the auspicea of the U.S.

Department of Energy by the Lawrence Livermore
National Laboratory under contract number

u-7405-ENG-48 .

Though the inside-barrier concept remains
in strong contention and has been actively

pursued by the University of Wisconsin,
Livermore, for a number of reasons, 3 decided
to examine another thermal-barrier configuration,

called the A-cell barrier. In addition,
Livermore ia investigating a novel T14R concept
called the axiaynunetric cusp, first described by
Logan in November, 1979.4 This paper outlinea

the physics modeling from LLNL’s parametric code

for A-cell and axisymmetric-cusp tandem mirror
reactora. A detailed description of all the
equations in the model and the numerical methods
used to solve them is given in Ref. 5.

Qualitative Description of A-Cell Barriers

The A-cell barrier incorporates a
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neutral-beam-injected yin-yang plug, in which

the potential is slightly raised between the
central cell and the barrier region. On the
outboard side of this plug there is a C-coil.
The barrier region lies in the gap between the

plug’s outboard mirror and the C-coil.

The magnetic field strength, plasma
density, and plasma-potential profiles are

depicted in Fig. 1. Note that off-minimum

injection of ions in the barrier, coupled with
ion pumping at the barrier minimum, creates a
distribution of sloshing ions with density peaks

at either aide of the barrier minimum. ECRH

heating at the outboard peak (point A) produces
the machine’s highest potential maximum, which
ultimately confines the central-cell ions that
pass through the yin-yang plug. This can be

seen in the typical velocity-space diagram for

central-cell ions, pictured in Fig. 2. The
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electrons see this point as a potential well,

and those electrons that lie within a certain

ellipsoidal region of velocity space at point A

(Fig. 3) are potentially trapped there, and are
referred to as “warm-electrons .“ Because the

ECRH heats electrons in the perpendicular

‘1

Figure 3 Point A Electron Velocity Space

direction in velocity space, it tends to not
only raiae the warm-electron temperature, but
also to convect them out of the ellipsoidal
well. Both of these effects tend to untrap the
warm-electrons from the well at point A, and

this is why the potential there risea.

Figure 4 shows the velocity-space diagram
for electrons at the barrier minimum (point B).
ECRR is also applied here because, by convecting
electrons in the perpendicular direction in
velocity space, it tends to trap them in a
mirror well at high energy. These high-energy,
mirror-trapped electrons are referred to as

hot-electrons, and the effect of maintaining
them there is-to depreaa
B--almoat to ground.
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Figure 4 Point B Electron Velocity Space

The axisymmetric TMR, as it was originally

proposed,4 was to work in much the same way as

the A-cell barrier TMR; field lines from the
central cell were to pass through a plug, in
which the potential was slightly raised, into a
barrier region. It was later decided not to use

. .
a plug In this configuration. In the A-cell

barrier configuration, the plug ia necessary to

provide good curvature for MHD stability; the
axisymmetric configuration, however, has good
curvature in other places. Thus, in the
axiaymnetric-T?4R physics model the central cell
is adjacent to the barrier region.

Outline of A-Cell Barrier Physics

The code’s treatment of the central-cell
physic,a is nearly identical to that of the
inside-barrier code, 2 with one important

addition: the code divides the central cell

into concentric flux tubes of equal thickness,

and usea magnetic flux conservation to map these
flux tubes into the plug and barrier regions.

Although the code is not truly one-dimensional
in that it does not treat radial diffusion
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processes, it does allow the specification of

radial beta profiles in the central cell, plug,
and barrier (point B) regions. Given these, it
solves all subsequent equations, including the
particle and energy balance equations,

separately along each flux tube.

The Logan-Rensink plug model,6 coupled

with the plug beta equation and plug ion energy
balance, is used to determine a self-consistent

solution for the plug potential rise A@pc,
the plug density ~, and the plug ion confine-
ment (n-r)p along each consecutive flux tube.

To proceed, the central-cell potential @e
and the barrier (point A) potential rise @c
are guessed. Later, we shall use the central-

cell electron and ion particle balances,

respectively, to adjust these guesses; this
computational structure will be referred to as
the “outer loop.”

Given @e and 0=, we then guess the
fraction Fe= of electrons at point B that are
cold (passing). Later, we shall use the

hot-electron particle balance to adjust this

guess; this computational structure will be
referred to as the “middle loop.”

Next we guess the barrier potential

depreSSiOn~b. We shall now use the

quasineutrality condition at point B to adjust
this guess; this computational structure will be
referred to as the “first inner loop.” Given

$!&, the passing-ion density at B is modeled by

the following (approximate) mapping equation:

1

()

1/2

n. = n. 9
n~T; Tc (1)

lb,pass lp,pass ~

where nip pass is the passing-ion density in

the plug (obtained from the plug model), Rib

is an effective barrier mirror ratio depending
upon the plug and barrier vacuum fields as well
as A@pc and Tc, and Tc is the central-cell

ion temperature.

Next, the following two quantities are

input (possibly functions of radius):

n. + n.
lb,p ass lb, trap

gib E
n.

lb,pass
(2a)

and

n. + n. + n.

G. = lb’passn
lb, trap lb, slosh ,

(2b)
lb -

ib,pass

ao that

l<gib<Gib$ (2C)

and where nib,trap ia the density of iona that

are potential-trapped at barrier point B, and
nib,slosh is the density of sloshing ions at
barrier point B. Thus, SiIIC’? Weknow Ilib,pass:

nib,trap = (gib-

and

‘ib,aloah = (Gib -

so the total ion dens

‘ib = Gib ‘ib,pass

) ‘ib,pass

gib) nib,pass~

ty at point B is

.

Now, the cold (passing) electron density at
point B is given by the mapping equation:

(3a)

(3b)

(3C)

where ne is the plug electron density
(obtaine$ from the plug model), and Tec
is the central-cell electron temperature.
The hot-electron density at barrier point B

is then given by:

()1 - Fec
n 9
eb,hot = ‘eb,cold F

ec
(5a)

so the total electron density at point B is:

‘eb = neb,cold/Fec ; (5b)

these two equations follow directly from the
definition of Fee. Combining Eq. (l), (3c),

(4), and (5b), the quasineutrality condition,

nib = neb, may be written:

This can be solved by a fixed-point iteration:

that is, Eq. (6) may be used to obtain a better
estimate of~b, and the first inner loop is
repeated with this new estimate until

convergence is obtained. Once we haVe@b, the
potential drop from point A to point B, 6Q)a,

is given by:

&9a “@b ● ~c -LWpc .

Next, we guess the value of beta at point
A, pa. We shall now use the warm electron
particle balance to adju8t this guess; this
computational structure will be referred to as
the “second inner loop.” Given @a, the

beta-reduced magnetic field at point A is:

(7)
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B -B
pla, a vac, a

(l-Ba) ‘/2 .

We may now write the beta equation at point

(8)

A:

(n. ,b,trap) >+ nec,b Tec+ n.
lb,paaa

ib

()
+ “ib.slosh ‘inj,a &+ ‘e~,hot o-s Rer $& ‘b “

(9)

The firat term on the left is the preaaure
contribution from both passing and trapped ions

(this is reduced by the factor Rib since we
are interested only in the perpendicular
pressure). The second term ia the cold-electron

pressure, the third term ia the sloshing-ion
perpendicular pressure, and the fourth term is

the hot-electron perpendicular pressure. In the

fourth terM, ~eh h the mean hot-electron

energy, and the factor of 0.8 is used instead of
2/3 because, being mirror-trapped, most of the

hot-electron press~re is perpendicular. We can
solve Eq. (9) for Eeh, since we know

everything else.

Next, the cold electrons, hot electrons,

and sloshing ions are mapped from point B to
point A by the following (approximate) relations:

‘ea,cold = ‘eb,cold
(&)(r6;;Tec)1’;I{)

(~

B
nea, hot = ‘eb, hot ;:::?:::) (~:$,~l’z’(ll)

and

respectively. In Eq. (11), Bvac,mb is the

vacuum field at the barrier mirro~ (see Fig. 1).

Also, the factor 0.2 in front of Eeh is meant
to give the parallel-energy component. In F.q.

(12), x is so exponent chosen to model the
charge-exchange pumping effect on the
aloahing-ions; in our studies thus far we have

used x = 1.

The quasineutrality condition at point A can

then be invoked to find the warm-electron density:

nea,warm = ‘ia,slosh - ‘ea,cold - ‘ea~hot” (13)

Note that the passing and trapped-ion densities

go to zero at point A.

Next, we employ the beta equation at Point

A:

‘ia,slosh ‘inj,a + ‘ea,warm T- T+ nea,cold ec

( ‘)B~ac a

+n 0.8 ~eh =
ea,hot

Da ‘
2P0

(14)

where Ein. a is the sloshing-ion injection
energy. $~i, equation maybe solved for Tew
since everything else is known.

We now know everything we need to know to
check the warm-electron particle balance.
Warm-electrons are introduced by the
sloshing-ion beam, the current of which is

calculated from the sloshing-ion particle
balance and the low-energy pump beam.
Warm-electrons are also introduced when cold

(passing) electrons trap in the ellipsoidal
well. The collisional loss of electrons from an
ellipsoidal well in velocity space has been
modeled by Cohen, et al.7 Under conditions of

strong ECRH, all exiting electrons emerge as
hot-electrons with perpendicular energy 6Qa/(1
- Rab), where Rab is Bpla b/Bpla,a;

under conditions of weak ~cRH, some exiting

electrons emerge as cold (passing) electrons as
well (see Fig. 3).

The mathematical details of this model will
be found in Ref. 5. For now we note that when

all these entering and exiting currents are
calculated, they will not, in general, balance.
Thus, we must adjust our guess for ~a until

they do. This completes the second inner loop.

Next, we check the hot-electron particle
balance. Hot-electrons are produced when ECRH
at point A boils electrons out of the top of the

ellipsoidal well there (recall this was a loss
term for the warm-electrons). Hot-electrons can
also be produced by the ECRH applied at point B,
because it convects cold (passing) electrons

upwards in perpendicular energy until they
mirror-trap (see Fig. 4). These two source

currents are balanced against the confinement

loss of electrons in a mirror well. The value

that was guessed for Fec is adjusted until the
terms do, indeed, balance. This completes the
middle loop.

We may think of the middle and inner loops

as an attempt to solve two equations, the warm-

and hot-electron particle balance equations, in
two unknowns, Fec and Da. It turna out that

this solution is not eaay. Fixed-point

iterations definitely do not work here. The

existence of multiple solutions, which have been
found under certain circumstances, foils

bisection or regula falsi techniques (neither of

which are well suited to two-dimensional root
finding anyway). Newton step techniques can run

into trouble because in the domain, O < Fee< 1
and ()<~acl, there may be points for which

the balance equationa’ terms are undefined. For

example, if pa gets t~o big, Eq. (9) can yield
a negative ValUe fOr Eeh; if pa gets too
small, on the other hand, Eq. (14)can yielda
negativevalue for Tew. At present,the code
scansthe entiredomainlookingfor a solution
at each point,and, if thereare multiple
solutions,selectsthe solutionwith the
smallestDa at the smallestFee. This
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process is time-consuming, but it seems to
work. Work to find a speedy, reliable algoritfm
to solve these equations is ongoing.

The central-cell ion and electron particle
and energy balance equations are next solved for

the central-cell auxiliary ion-fueling current,

the auxiliary cold-electron current (described
in Ref. 1), and the fractions of trapped ions

pumped by the low-, medi-, and high-energy
pump beams. Only two of the pump-beam fractions

are independent (the third is determined by the
condition that all three should add to one), so
this gives us four equations in four unknowns.
These are linear equations (for this choice of
unknowns) and so they can be easily solved. We

then adjust our initial guesses for ~e and

@c until the pump-beamfractionscomeout to
be what we want them to be. This adjustment is
done by means of Powell’s technique for finding
roots (a compromise between a Newton step and a

steepest descent step), and the Jacobian is
updated at each step according to Broyden’s
method.8 This completes the outer loop.

The neutral beam current input to the plug
is calculated from the plug ion-particle
balance, and from this we can find the plug
injection power. The neutral-beam current input

to the barrier (sloshing-ion beam) is found from
the sloshing-ion particle balance, and the
sloshing-ion beam injection power is
calculated. A trapped-ion particle balance, in

conjunction with the three pump-beam fractions,

fixes the currents of each of the three beams,

and thus determines the injected pumping power.
The ECRN power inputs at A and B are calculated
from the warm- and hot-electron energy balances,

respectively.

It should be borne in mind that all of the

above is done for each flux tube separately, and
the results are integrated over the radial
profile to get the total input power. This

total input power is then divided into the
fusion power to get the plasma Q. We also note

that the code, as it is currently structured,

tells us what current and ECRN radial-deposition
profiles are necessary to achieve the input beta
profiles.

Status of Code

We plan to use the code to quantify a

comparison study between the axisymreetric and
A-cell barrier configurations of tandem mirror
reactors. Though the former may achieve higher

central-cell beta values, it may necessitate

higher pumping power than the A-cell design
because the latter’s potential rise, ~~c,

serves to attenuate the number of passing ions
that enter the barrier region.

Numerical results in the form of test cases
andlor parametric studies are not yet

available. The code’s inner and middle loops

have converged successfully, but not in
conjunction with a fully physically-consistent

solution to its outer loop. It is not yet clear
whether this failure to converge is due to

algorithmic difficulties, to problems with the
physics model, or to inconsistencies in the

input data used thus far.
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